High-salt diet increases sensitivity to NO and eNOS expression but not NO production in THALs.
نویسندگان
چکیده
L-Arginine inhibits thick ascending limb (THAL) NaCl absorption by activating endothelial NO synthase (eNOS) and increasing NO production. Inhibition of renal NO production combined with a high-salt diet produces hypertension, and the THAL has been implicated in salt-sensitive hypertension. We hypothesized that a high-salt diet enhances the inhibitory action of L-arginine on NaCl absorption by THALs because of increased eNOS expression and NO production. To test this, we used isolated THALs from rats on a normal-salt (NS) or high-salt diet (HS) for 7 to 10 days. L-Arginine (1 mmol/L) decreased chloride absorption by 56+/-10% in THALs from rats on a HS diet, but only 29+/-3% in THALs from rats on a NS diet. eNOS expression in isolated THALs from rats on a HS diet was increased by 3.9-fold compared with NS (P<0.03). However, L-arginine increased NO levels to the same extent in THALs from both groups, as measured with DAF-2 DA or a NO-sensitive electrode. To determine whether a HS diet increases the sensitivity of the THAL to NO, we tested the effects of the NO donor spermine NONOate on chloride absorption. In THALs from rats on a HS diet, 1 and 5 micromol/L spermine NONOate reduced chloride absorption by 35+/-5% and 58+/-6%, respectively. In contrast, these same concentrations of spermine NONOate reduced chloride absorption by 4+/-4% (P<0.03 versus HS diet) and 43+/-9% in THALs from rats on a NS diet. We conclude that a HS diet enhances the effect of NO in the THAL. L-Arginine-stimulated NO production was not enhanced by a HS diet, despite increased eNOS protein.
منابع مشابه
A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1.
A high-salt diet increases renal endothelin (ET) production and thick ascending limb (THAL) endothelial nitric oxide synthase (eNOS) expression. ET stimulates THAL eNOS expression via ET(B) receptors. The tonicity of the renal medulla is highly variable, and hyperosmolality stimulates ET-1 synthesis by endothelial cells. We hypothesized that a high-salt diet raises medullary osmolality, increas...
متن کاملIncreased salt-sensitivity in endothelial nitric oxide synthase-knockout mice.
BACKGROUND Although impaired nitric oxide production contributes importantly to salt-sensitivity, the role of the endothelial isoform of nitric oxide synthase (eNOS) has received little attention. In the present study we compared the effects of a high-salt diet on the blood pressure response of eNOS knockout (eNOS-/-) and control (eNOS+/+) mice. METHODS Mean arterial pressure (MAP), heart rat...
متن کاملGene transfer of eNOS to the thick ascending limb of eNOS-KO mice restores the effects of L-arginine on NaCl absorption.
The thick ascending limb of the loop of Henle (THAL) plays an essential role in the regulation of sodium and water homeostasis by the kidney. l-Arginine, the substrate for nitric oxide synthase (NOS), decreases NaCl absorption by THALs. We hypothesized that eNOS produces the NO that regulates THAL NaCl transport and that selective expression of eNOS in the THAL of eNOS knockout(-/-) mice would ...
متن کاملRunning title: Diet, NO and Salt-Sensitivity A High-Fat, Refined Carbohydrate Diet Affects Renal NO Synthase Protein Expression and Salt Sensitivity
Chronic consumption of a high-fat, refined carbohydrate (HFS) diet causes hypertension. In an earlier study, we found increased nitric oxide (NO) inactivation by reactive oxygen species (ROS) and functional NO deficiency in this model. Given the critical role of NO in renal sodium handling, we hypothesized that diet-induced hypertension may be associated with salt sensitivity. Female Fischer ra...
متن کاملA high-fat, refined-carbohydrate diet affects renal NO synthase protein expression and salt sensitivity.
Chronic consumption of a high-fat, refined-carbohydrate (HFS) diet causes hypertension. In an earlier study, we found increased nitric oxide (NO) inactivation by reactive oxygen species (ROS) and functional NO deficiency in this model. Given the critical role of NO in renal sodium handling, we hypothesized that diet-induced hypertension may be associated with salt sensitivity. Female Fischer ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 41 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2003